甚至有些悲觀黨宣稱數理大廈要坍塌了,我們的世界都是虛假的——然後這些貨真的就跳樓了,在奧地利還留有他們的遺像,也不知道是用來被人瞻仰還是鞭屍的。

這件事一直到要柯西和魏爾斯特拉斯兩人的出現,才會徹底有了解釋與定論,並且真正定義了後世很多同學掛的那棵樹。

但那是後來的事情,在小牛的這個年代,新生數學的實用性是放在首位的,因此嚴格化就相對被忽略了。

這個時代的很多人都是一邊利用數學工具做研究,一邊用得出來的結果對工具進行改良最佳化。

偶爾還會出現一些倒黴蛋算著算著,忽然發現自己這輩子的研究其實錯了的情況。

總而言之。

在如今這個時間點,小牛對於求導還是比較熟悉的,只不過還沒有歸納出系統的理論而已。

徐雲見狀又寫到:

對f(k+1求導,可得f(k+1'=e^x1+x/1!+x^2/2!+x^3/3!+……+x^k/k!

由假設知f(k+1'>0

那麼當x=0時。

f(k+1=e^010/1!0/2!.0/k+1!=11=0

所以當x>0時。

因為導數大於0,所以f(x>f(0=0

所以當n=k+1時f(k+1=e^x[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1/(k+1]!(x>0)成立!

最後徐雲寫到:

綜上所屬,對任意的n有:

e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)

論述完畢,徐雲放下鋼筆,看向小牛。

只見此時此刻。

這位後世物理學的祖師爺正瞪大著那一雙牛眼,死死地盯著面前的這張草稿紙。

誠然。

以目前小牛的研究進度,還不太好理解切線與面積的真正內在含義。

但瞭解數學的人都知道,廣義二項式定理其實就是複變函式的泰勒級數的特殊情形。

這個級數與二項式定理是相容的,係數符號也是與組合符號相容的。

所以二項式定理可以由自然數冪擴充至複數冪,組合定義也可以由自然數擴充至複數。

只不過徐雲在這裡留了一手,沒有告知小牛n為負數的時候就是無窮級數這件事。

因為按照正常的歷史線,無窮小量可是出自小牛之手,推導的過程還是交給他本人就好了。

就這樣過了幾分鐘,小牛方才回過神。

只見他直接無視了身邊的徐雲,一個身位竄回座位,飛快的開始演算了起來。

看著全身心投入計算的小牛,徐雲也不生氣,畢竟這位祖師爺就是這種脾氣,可能也就在威廉·艾斯庫的面前會相對好點了。

沙沙沙——

很快。