第一百五十章:全新的篩法!(第1/3頁)
章節報錯
在臺下所有數學家的議論聲中,林宇整理好思緒,來到白板面前,拿起黑色記號筆,然後毫不猶豫的開啟超腦,進行書寫。
“令v(x,t為描述流體速度的三維向量場,且p(x,t為流體壓強,納維爾-斯托克斯方程為:αv/αt+(v·▽)v=—▽p+vΔv+f(x,t。
其中:v>0為動黏滯度;f(x,t為外力;▽為梯度運運算元;Δ為拉普拉斯運算元。
上述方程為向量方程,可以分解為三個純量的方程,將速度及外力分解為三個座標下的分量:
v(x,t=[u1(x,t,u2(x,t,u3(x,t]
f(x,t=[f1(x,t,f2(x,t,f3(x,t]
則納維斯托克斯方程可寫成以下的形式…
………
當林宇剛開始解題的時候,在場的眾人都是不以為然的。
因為林宇的解題思路很一般,用的都是所有數學家都常用的篩法進行推導。
而在整個數學界,每天都有數之不盡的數學家用這種普遍的方法,對ns方程進行推演,可是沒有一個人能夠成功的推到最後。
因為這其中所需要用到各方面的數學公式,以及各種計算量實在是太驚人。
就連德利涅這些數學界赫赫有名的數學頂尖大佬們,都是選擇將這種根本無法用人力去解決的世界性難題放置一邊。
所以,比起攻克這種根本不可能用數學方法證明的世界性難題,他們更願意將時間和精力放在其他世界性難題上。
因為,哪怕是研究其他世界七大千禧難題都要比研究納維-斯托克斯方程要好。
畢竟,除了納維-斯托克斯方程和p與np問題之外,其他的世界七大千禧難題基本上都是可以有進展的。
哪怕這個進展對於解題並沒有任何實質性的用處。
但是,只要有人攻克,有人發現問題,那就遲早會出現解題的進展。
隨著時間的流逝。
然而,當眾人理所應當的認為林宇應該也會折戟沉沙時,他們頓時紛紛瞪大了眼睛,目光直勾勾的盯著報告臺上的白板。
“老陳,你看看林宇那小子用的篩法,好像和現在數學界普遍存在的篩法有些不一樣啊?”
座位上,丘成同老爺子目光緊緊盯著報告臺上的白板,頭也沒回的疑惑的問道。
“確實,他現在所用的篩法,和數學界普遍存在的任何一種篩法都不同。”
陳省身老爺子神色凝重的點了點頭。
沉思片刻後,陳省身老爺子彷彿想到了某種可能,語氣中,帶著難以制止的興奮和顫抖的說道:“我看出來了!他的這種篩法,好像是一種全新的篩法!是目前數學界根本沒出現過的新的篩法!!”
眾所周知,現在數學界最常用的一共有三種篩法。
第一種是o(n√n暴力篩法(n≤2e5。
它可以一個一個判斷是否有因數,然後進行篩選,是最常用的方法,當複雜度小時,非常的方便。
第二種是最經典的o(nlog2n埃氏篩(n≤1e6。
它可以對於每一個數,篩去它的倍數,而其中又分為大篩法、小篩法等等。
至於第三種則是o(n尤拉篩(n≤1e8
這三種篩法,是數學界非常常用的篩法,一般用這些,就可以搞定數學界大部分需要用到的題目。
當然,除了這些之外,還有許多特殊的,所需要用到的範圍非常小的篩法,比如min25篩法等等。
只不過,現在林宇所用到的篩法,卻都不是其中的任何一種!
“全新的篩法!?”
在聽完陳省身老爺子的話後,旁邊的丘成同老爺子心中頓時駭然。
他再也顧不得臺上還在解題的林宇,整個人更是下意識的看向旁邊的陳省身老爺子,一臉的震撼。
全新的篩法,它代表的意義不僅僅只是證明某種猜想那麼簡單!
它代表的是一種數學工具的革新!
毫不誇張的說,它的出現,足以讓數學界無數未解之謎,重新有了解開謎團的可能!